题目

已知函数f(x)=ex+2x2-3x.
(Ⅰ)求曲线y=f(x)在点(1,f (1))处的切线方程;
(Ⅱ)当x≥1时,若关于x的不等式f(x)≥
5
2
x2+(a-3)x+1恒成立,试求实数a的取值范围.

分类:数学


满意答案

(I)f′(x)=ex+4x-3则f'(1)=e+1,又f(1)=e-1
∴曲线y=f(x)在点(1,f (1))处的切线方程为y-e+1=(e+1)(x-1)
即(e+1)x-y-2=0
(II)由f(x)≥
5
2
x2+(a-3)x+1得
ex+2x2-3x≥
5
2
x2+(a-3)x+1即ax≤ex-
1
2
x2-1
∵x≥1∴a≤
ex
1
2
x2−1
x

记g(x)=
ex
1
2
x2−1
x
,则g'(x)=
ex(x−1)−
1
2
x2+1
x2

 记φ(x)=ex(x-1)-
1
2
x2+1则φ′(x)=x(ex-1)
∵x≥1,φ′(x)>0,∴φ(x)在[1,+∞)上单调递增
∴g(x)≥φ(1)=
1
2
>0
∴g'(x)>0,∴g(x)在[1,+∞)上单调递增
∴g(x)≥g(1)=e-
3
2

由a≤g(x)恒成立,得a≤g(x)min
∴a≤e-
3
2
即a的取值范围是(-∞,e-
3
2
]

推荐课程