题目

对信息技术的发展产生了重大影响的是什么

分类:


满意答案

电子学、集成电路、计算机、互联网等都是对信息技术的发展产生了重大影响.

热门问答

">高等数学麦克劳林公式
 
">
A等于2乘3乘a B等于2乘a乘7 已知A,B的最大公约数是6,那么a等于()A,B间最小公
A等于2乘3乘a B等于2乘a乘7 已知A,B的最大公约数是6,那么a等于()A,B间最小公倍数是()
a = 3
A、B的最小公倍数为168
二减九分之十减九分之五等于多少
3分之1
英语翻译
我们一直保持和DHL ,UPS ,FEDEX ,TNT 的紧密合作,根据客人需求及发往国家、货物重量,结合四大巨头自身价格、时效方面优势,推荐更合理的渠道及价格.真正站在发货人立场,尽全力为您节省成本.感觉犹如自已公司的物流部.
经过我们长期以来对市场的了解和把握,我们不断和世界各地的优质物流公司及优质航空公司合作,开展东南亚专线服务,中东专线服务,韩国专线服务,日本OCS ,SGW&SGE 预付及到付服务!不断为您提供实惠,快捷,安全的专线服务!
凭借香港国际机场密集型航班及专业空运操作平台优势,我们和EK ,AF ,MH ,TG ,UPS,JL,OZ 知名航空公司签有协定仓位,淡季价格优惠,旺季保证仓位.
我们一直致力开发国外代理及长期战略合作,至今已有300多家长期合作代理.组合当地优质资源,为您提供方便,灵活,高效的国际进口包税门到门服务!
we've been keeping close relationship with DHL,UPS,FEDEX,TNT, their pricing and timing advantages are always taken into specific analysis that would enable us provide more economic channel and price based on your requirment,destination country and the weight of product. It's our vision to save as much cost as possible for you, fulfilling the same function as your own logistci department.
The long term understanding on the market drives us never stop the pace to extend cooperation with qulified logistic and airline companies all around the world, speicial lines are now lunched to provide economic, timing and safe services in South-east Asia, Middle East, South Korea and Japan.
our contract with famous airline companies, like EK, AF, MH, TG, UPS, JL, OZ would ensure the better price during low season and fixed shipping space during busy season.
we've been dedicated on developing strategic cooperations with foreign partners, and now more than 300 agencies have estableshed long term contract with us.thanks to our special local resources,we could provide convinient, flexible and efficient international door-to-door service to you.
vb 循环语句For/next ,怎么计算?
如s=0
For I=3 to 10 step 3
s=s+i
next i
print i
如上程序段运行结束后,循环变量i的值为多少?
【答案】:12
【运行过程】由于step(步长)为 3,每次循环时,i 都会+3 .如果不写step 3 则默认每次循环+1
循环 i i与10比较 s
① 3
f(x)≥0,则
f(1)
f′(0)
的最小值为(  )
A. 2
B.
5
2

C. 3
D.
3
2
">已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )
A. 2
B.
5
2

C. 3
D.
3
2
a>0
△=b2−4ac≤0
,∴c
b2
4a

又f′(x)=2ax+b,
∴f′(0)=b>0,f(1)=a+b+c.
f(1)
f(0)
=1+
a+c
b
≥1+
a+
b2
4a
b
=1+
4a2+b2
4ab
≥1+
2
4a2b2
4ab
=2.
当且仅当4a2=b2时,“=”成立.
故选A.">∵f(x)≥0,知
a>0
△=b2−4ac≤0
,∴c
b2
4a

又f′(x)=2ax+b,
∴f′(0)=b>0,f(1)=a+b+c.
f(1)
f(0)
=1+
a+c
b
≥1+
a+
b2
4a
b
=1+
4a2+b2
4ab
≥1+
2
4a2b2
4ab
=2.
当且仅当4a2=b2时,“=”成立.
故选A.

推荐课程