题目

抛物线y=ax²+bx+c经过点A(3,0)、B(2,-3),C(0,-3).(1)求它的解析式和对称轴(2)该抛物线在x轴下方的对称轴上是否存在点P,使△PAB为直角三角形?若存在,求点P的坐标;若不存在,请说明理由.

分类:数学


满意答案

把点A(3,0) B(2,-3) C(3,-3)分别代入解析式y=ax^2+bx+c得方程组:
9a+3b+c=0
4a+2b+c=-3
0+0+c=-3
解方程组得:
a=1
b=-2
c=-3
把a=1 b=-2 c=-3分别代入解析式y=ax^2+bx+c得y=x^2-2x-3
对称轴:x=-b/2a=1
所以对称轴是x=1
(2)抛物线在x轴下方的对称轴上存在点P,使三角形PAB是直角三角形
由题意可设点P(1,a)
PA^2=(3-1)^2+a^2=4+a^2
PB^2=(2-1)^2+(-3-a)^2=a^2+6a+10
AB^2=(3-2)^2+(0+3)^2=10
因为三角形PAB是直角三角形,角APB=90度
由勾股定理得:
AB^2=PA^2+PB^2
所以4+a^2+a^2+6a+10=10
a^2+3a+2=0
a1=-2 a2=-1
所以点P(1,-1) P(1,-2)
你的微笑0263 2014-11-06
">选C. A选项:将x=1带入解析式,得到y=1,则图像经过
高一数学,对数函数的 1.已知f(x)=|(log2)x|,当0
1:由题目得知:x
若关于x的方程x加2等于a和2x减4等于4a有相同的解
因为x+2=a x=a-2 又因为x-4=4a x-2=2a x=2a+2 所以a-2=2a+

推荐课程

最新回答

其他相关问题